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Widespread occurrence of multidrug-resistant tuberculosis 
(MDR-TB) is a serious threat to the success of TB control 
worldwide. Based on current evidence, the World Health 
Organization (WHO) has recently revised the classification 
of anti-TB drugs to help clinicians build an appropriate 
regimen for effective treatment of MDR-TB. A shorter (9 
to 12 month) regimen has also shown promise in effective 
treatment of MDR-TB. Accurate drug susceptibility testing 
(DST) of Mycobacterium tuberculosis to anti-TB drugs is 
also crucial for diagnosis and management of MDR-TB. 
Phenotypic DST of M. tuberculosis by solid medium-based 
methods is slow, requiring 4 - 6 weeks to report results. 
Liquid broth-based automated Mycobacteria Growth 

Indicator Tube (MGIT) 960 system reporting results 
within 10 - 14 days have been developed and endorsed 
by WHO. Although performance of MGIT 960 system was 
excellent in early proficiency studies for first-line drugs 
except pyrazinamide, recent studies have shown poor 
performance for M. tuberculosis isolates with low-level 
resistance to rifampicin and ethambutol. Performance of 
MGIT 960 system for second-line drugs is also sub-optimal. 
Molecular DST methods rapidly detect resistance to first-
line and important second-line drugs. Whole-genome 
sequencing is a newer alternative capable of providing 
rapid drug resistance profiles to inform treatment and 
strain information for global surveillance.

INTRODUCTION
Tuberculosis (TB) is a major infectious disease of 

global proportions and the widespread occurrence of 
drug-resistant (DR)-TB is a serious threat to global TB 
control success. The natural history of TB is unique. 
Most active TB disease cases in humans are caused 
by Mycobacterium tuberculosis. Some disease cases are 
also caused by Mycobacterium africanum (mainly in 
Africa) and Mycobacterium bovis (due to consumption 
of unpasteurized milk), two other species belonging 
to the M. tuberculosis complex[1]. The infection is 
acquired by individuals mainly by inhalation of 
droplet nuclei containing few bacilli expectorated 
by sputum smear-positive pulmonary TB patients 
(open TB) during close human contact[2,3]. Primary 
infection with M. tuberculosis either leads to clinically 
active TB disease (in ~10% of exposed individuals) or 
the effective immune response mounted by the host 
arrests multiplication of tubercle bacilli; however, 

complete sterilization is achieved in only a sub-set 
of individuals[2,3]. In the remaining subjects, infection 
is only contained but not eradicated, as some bacilli 
escape killing and persist in granulomatous lesions 
(latent TB infection). The latent infection may remain 
dormant for a long-time; however, M. tuberculosis 
retains the ability to resuscitate and cause active TB, 
years to decades later, often due to waning of the 
immune response[2,3]. Current estimates suggest that 
nearly 25% of the world population is latently infected 
with tubercle bacilli and 5 - 10% of the infected 
individuals will eventually develop active TB disease 
during their life-time[4]. The risk of reactivation of 
latent infection is much higher in human subjects 
with underlying immunodeficiencies, diabetes or co-
infection with human immunodeficiency virus (HIV)
[2,3]. Most active TB disease cases in low TB incidence/
high income countries occur in foreign-born 
individuals due to reactivation of latent infection, 
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while recent infection/re-infection is also common 
in TB endemic countries[5-7]. Pulmonary TB accounts 
for > 85% of active TB cases in high TB incidence 
countries, while extrapulmonary TB is more common 
in low TB incidence countries[5-7].

METHODS
In this article, recent advances in the diagnosis 

and proper management of patients with DR-TB 
were critically reviewed. For this purpose, the latest 
data on the global epidemiology of TB and DR-TB 
were obtained from the annual TB report published 
in 2017 by the World Health Organization (WHO). 
The current literature on re-classification of anti-
TB drugs, new treatment approaches and recent 
developments in rapid diagnosis of DR-TB were 
extensively researched and critically evaluated. The 
main findings are described below. 

LITERATURE REVIEW
Global epidemiology of TB, drug-resistant TB and 
multidrug-resistant TB

Despite declining trends in the worldwide 
incidence of active TB disease by about 2% and 
reduction in TB deaths by nearly 3% in the last 
several years, the global burden of TB continues to 
remain high. According to the latest annual survey 
conducted by the WHO, there were an estimated 10.4 
million active TB disease cases (including 1 million 
patients co-infected with HIV) in 2016[8]. Most of the 
estimated TB cases in 2016 occurred in the WHO 
regions of South-East Asia (45%), Africa (25%) and 
the Western Pacific (17%) while only 7%, 3% and 
3% of cases occurred in the Eastern Mediterranean 
region, the WHO European region and the region 
of the Americas, respectively[8]. Nearly 56% of the 
10.4 million TB cases occurred in only five (China, 
India, Indonesia, the Philippines and Pakistan) 
countries[8]. The annual number of incident TB cases 
varied widely among individual countries, ranging 
from less than 10 per 100,000 people in most high-
income countries to 150 - 300 per 100,000 people 
in most of the 30 high TB burden countries[8]. The 
incidence of more than 500 cases per 100,000 people 
was also recorded in some countries (such as Lesotho, 
Mozambique, the Philippines and South Africa). An 
estimated 1.3 million people not infected with HIV 
(HIV-negative) and an additional 0.374 million HIV-
coinfected individuals died from TB in 2016, making 
TB the ninth leading cause of death worldwide and 
the leading cause of death from a single infectious 
agent[8]. Most of the global TB deaths in recent years 
have been attributed to the resistance of M. tuberculosis 
strains to an increasing number of anti-TB drugs.

The increasing incidence of DR-TB, multidrug-
resistant (MDR)-TB (M. tuberculosis resistant at least 
to rifampicin and isoniazid, the two most effective 
first-line drugs) and extensively drug-resistant 
(XDR)-TB (MDR-TB strains additionally resistant to 
a fluoroquinolone plus injectable agent, kanamycin, 
amikacin or capreomycin) pose a major threat to 
global TB control efforts[8]. In 2016, an estimated 
600,000 new TB cases were resistant to rifampicin 
(RR-TB) and 490,000 of these RR-TB cases were 
additionally resistant to isoniazid (MDR-TB)[8]. 
Patients infected with RR-TB also require the same 
treatment approaches as MDR-TB. Worldwide, an 
estimated 4% of all new TB cases and 19% of previously 
treated cases had MDR-TB and nearly half (47%) of 
these cases occurred in only three (India, China and 
the Russian Federation) countries[8]. The WHO has 
further categorized infection with M. tuberculosis 
strains resistant only to rifampicin and isoniazid 
without additional resistance to other first-line drugs 
as uncomplicated MDR-TB. Successful treatment 
of uncomplicated MDR-TB is higher compared to 
treatment of MDR-TB resistant to additional first-
line drugs[8-10]. Nearly 10% of all MDR-TB cases 
are now estimated to have XDR-TB[8-11]. Several 
countries including India, Iran, Italy and South Africa 
have also reported totally drug-resistant (TDR) (or 
extremely drug-resistant)-TB, active disease caused 
by M. tuberculosis strains resistant to all tested anti-
TB drugs[12-16]. The definition of TDR-TB, however, 
is currently vague and not endorsed by WHO, since 
drug susceptibility testing (DST) results for many 
second-line and other drugs are poorly reproducible 
(ranging from 50 - 80%) and the number of drugs tested 
varies widely among reference mycobacteriology 
laboratories around the world[17]. The WHO expert 
committee has recently concluded that defining total 
drug resistance in M. tuberculosis is challenging and 
controversial and the existing category of XDR-TB 
already encompasses extensive drug resistance to the 
most active anti-TB drugs[9,17].

Treatment of fully drug-susceptible-TB is highly 
efficacious[18,19]. On the contrary, treatment of patients 
with DR-TB, particularly MDR/XDR-TB, is much 
more difficult due to lengthy (12 - 24 months), more 
expensive and more toxic drug regimens and the 
patients often experience clinical failure or disease 
relapse[10,11,16]. Worldwide, treatment success rates for 
drug-susceptible TB, MDR-TB and XDR-TB have been 
recorded as 83%, 54%, and 30%, respectively[8]. Thirty-
five countries in Asia and Africa have also introduced 
short-course (9 - 12 months) drug regimens (known 
as Bangladesh regimen) for the treatment of RR-TB/
MDR-TB patients, with treatment success rates of 
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nearly 90%[8,20,21]. Two new anti-TB drugs (bedaquiline 
and delamanid) have recently been approved to treat 
MDR-TB under defined programmatic conditions[22]. 
Furthermore, in an effort to improve treatment 
outcome, more than 80 countries have started using 
bedaquiline and more than 50 countries have started 
including delamanid in treatment regimens for MDR/
XDR-TB[8].

Re-classification of anti-TB drugs for the treatment 
of RR-TB, MDR-TB and XDR-TB

The anti-TB drugs were previously categorized 
into 5 groups (Group 1 to 5) based on decreasing 
efficacy and increasing toxicity. Group 1 included 
highly efficacious, relatively less toxic and mostly 
bactericidal first-line (rifampicin, isoniazid (INH), 
ethambutol and pyrazinamide (PZA)) oral drugs 
suitable for combination therapy[18,19]. Streptomycin, 
previously used as a first-line drug, is not used 
routinely anymore for the treatment of fully drug-
susceptible (pansusceptible) TB due to higher 
frequency of resistance of M. tuberculosis isolates to 
streptomycin across the world and the availability 
of other active drugs that can be easily incorporated 
in oral regimens[18,23]. Group 2 included injectable 
aminoglycosides (kanamycin and amikacin) and 
capreomycin (cyclic polypeptide)[10,19]. Group 3 
included fluoroquinolones, particularly bactericidal 
agents such as levofloxacin (at high dose), gatifloxacin 
and moxifloxacin[24,25]. Group 4 included oral agents 
that are mainly bacteriostatic, less efficacious, 
expensive and more toxic than other second-line 
drugs and were used in therapy regimens only for 
treatment of MDR-TB and XDR-TB[10,18,19,26]. High dose 
INH and rifabutin (RBU) were also used as second-
line oral agents for some patients with drug-resistant 
TB[10,26]. Group 5 included third-line (reinforcing 
agents of unproven efficacy) agents that were used 
only occasionally for the treatment of MDR/XDR-TB 
but were not recommended for routine use due to 
variable efficacy and serious side effects, and some of 
these drugs (e.g. thioacetazone) are contraindicated 
for HIV-coinfected TB patients[10,27]. These drug 
classifications are now considered inadequate for the 
proper management of MDR/XDR-TB patients. Recent 
estimates have shown that management of MDR-
TB by conventional approaches requiring the use of 
multiple, highly toxic and expensive drugs for 18 - 24 
months actually amplifies the antimicrobial resistance 
further, since successful outcome is achieved in only 
about 50% of treated patients[8,22,28]. The availability of 
two new anti-TB drugs, bedaquiline and delamanid, 
to treat MDR-TB has renewed hope for improved 
outcome of MDR-TB and to prevent development of 

XDR-TB[29-31]. To improve the outcome of MDR-TB 
treatment, WHO has now re-classified anti-TB drugs 
with the aim of developing a more effective (more 
efficacious and better tolerated) regimen for RR-TB 
and MDR-TB cases[32-34]. It should be emphasized 
here that according to the revised scheme, the 
currently available drugs, including bedaquiline and 
delamanid, are classified into four groups (Group A 
to Group D) specifically for the treatment of DR-TB 
cases, particularly MDR-TB[32-34]. Furthermore, the 
remaining first-line drugs (PZA, ethambutol and 
possibly high-dose isoniazid and rifabutin) have been 
relegated to a minor role as a subclass of Group D 
agents. The newly described anti-TB drug groups are 
shown in Table 1.

Group A now includes moxifloxacin, gatifloxacin 
or high-dose levofloxacin (fluoroquinolones with 
bactericidal and sterilizing activity and excellent 
safety profile) as the best agents for the treatment 
of MDR-TB. These agents are now placed ahead 
of injectable agents, since their use is associated 
with a favourable outcome[32-34]. Group B includes 
second-line injectable (amikacin, kanamycin and 
capreomycin) drugs which are bactericidal but lack 
sterilizing activity[32-34]. It has also been suggested 
that Group B may, in future, include three oral drugs; 
linezolid (or sutezolid or tedizolid), bedaquiline 
and delamanid, if they prove to be more effective 
and less toxic than the injectables[32-34]. Group C 
currently includes second-line oral drugs; linezolid, 
clofazimine, ethionamide/prothionamide and 
cycloserine/terizidone[32-34]. Linezolid is bactericidal 
with sterilizing action. Although linezolid at regular 
dose is toxic, the toxicity can be mitigated by reducing 
the dose[35]. Ethionamide and prothionamide have 
moderate bactericidal activity but also exhibit higher 
toxicity, while clofazimine has some sterilizing 
activity and good tolerability[32-34].

Group D drugs have been further dividied into 
three sub-groups; D1, D2 and D3. Group D1 includes 
PZA and other first-line drugs (ethambutol and 
high-dose isoniazid), provided they are likely to be 
effective[32-34,36]. Rifabutin may also be considered for 
M. tuberculosis isolates with specific rpoB mutations 
which confer resistance to rifampicin but not to 
rifabutin[37,38]. Group D2 includes two new drugs; 
bedaquiline and delamanid that have recently been 
approved to treat MDR/XDR-TB cases when no 
other options are available or tolerated to complete 
at least four active drug-regimen[22,29-31]. Both drugs 
are bactericidal with sterilizing activity as they target 
actively replicating and dormant bacilli[39-41]. Recent 
studies have also shown safe and effective use of 
bedaquiline for up to 18 months as well as concomitant 
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use of both these agents[31,42]. These findings suggest 
the possibility of using these new agents for the entire 
duration of treatment as well as their use in patients 
with resistance patterns beyond MDR-TB such as 
pre-XDR-TB (MDR-TB strains additionally resistant 
either to fluoroquinolones or second-line injectable 
agents) and XDR-TB patients. Group D3 includes 
p-aminosalicylic acid, thiacetazone, amoxycillin-
clavulanate, imipenem-clavulanate and meropenem-
clavulanate, some of which require greater attention 
for toxicity[32-34]. Importantly, the meropenem/
clavulanate was found to be more active than 
imipenem/clavulanate and is bactericidal[43-45]. Thus, 
meropenem/clavulanate may be used as a core drug 
for pre-XDR/XDR-TB cases with resistance to second-
line injectables (Table 1).

According to this new drug classification proposed 
by WHO (Table 1), patients with RR-TB or MDR-TB 
should be treated with at least five effective anti-TB 
drugs during the intensive phase and should include 
PZA and four core second-line drugs, including 
one each from Group A and B and at least 2 drugs 

from Group C[32-34]. The remaining first-line drugs 
(ethambutol, high-dose isoniazid and/or rifabutin) 
are to be used only if they are likely to be beneficial 
based on drug resistance profile[32-34]. If a sufficient 
number of effective drugs are not available, an agent 
from Group D2 and other agents from Group D3 may 
be added. The new guidelines for effective treatment 
of RR-TB and MDR-TB also advocate that if PZA is 
compromised due to resistance (based on molecular 
analyses as phenotypic susceptibility testing is 
unreliable, see below) or can not be used, the regimen 
may be reinforced with a drug from Group C or D2, 
and if not possible, then from Group D3[32-34]. The total 
number of drugs included in the regimen should be 
carefully considered, keeping in mind the expected 
benefits and the risk of adverse reactions and non-
adherence. According to WHO, recognizing and 
promptly managing adverse drug reactions in the 
treatment of MDR-TB should be considered as a 
priority[8,32-34]. Other important factors contributing to 
the success of a given anti-TB drug in the management 
of MDR-TB cases include easy availability of the 

Category and drug Chemical description Cellular process inhibited Efficacy

Group A: Fluoroquinolones
Levofloxacin
Gatifloxacin
Moxifloxacin

Group B: Second-line, injectable agents
Amikacin
Kanamycin
Capreomycin
Streptomycin

Group C: Other core second-line agents
Linezolid
Clofazimine
Ethionamide
Prothionamide
D-Cycloserine
Terizidone

Group D: Add-on agents
Group D1

Pyrazinamide
Ethambutol
High-dose isoniazid
Rifabutin

Group D2
Bedaquiline (TMC207)
Delamanid (OPC-67683)

Group D3
Para-amino salicylic acid
Amoxycillin-clavulanate
Imipenem-clavulanate
Meropenem-clavulanate
Thiacetazoneb

 Fluoroquinolone
8-Methoxy-fluoroquinolone
8-Methoxy-fluoroquinolone
 
Aminoglycoside
Aminoglycoside
Polypeptide
Aminoglycoside
 
Oxazolidinone derivative
Iminophenazine derivative
Isonicotinic acid derivative
Isonicotinic acid derivative
Alanine analogue
Cycloserine analogue
 
 
Nicotinamide derivative
Ethylene diimino di-1-butanol
Nicotinic acid hydrazide
Rifamycin derivative
 
Diarylquinolone
Nitroimidazo-oxazole
 
Para-amino salicylic acid
Carbapenem with b-lactamase  inhibitor
Carbapenem with b-lactamase  inhibitor
b-lactam with b-lactamase inhibitor
Thiacetazone

DNA replication
DNA replication
DNA replication
 
Protein synthesis
Protein synthesis
Protein synthesis
Protein synthesis
 
Protein synthesis
Cell membrane function
Mycolic acid synthesis
Mycolic acid synthesis
Cell wall synthesis
Cell wall synthesis
 
 
Membrane energetics
Lipid/cell wall synthesis
Mycolic acid synthesis
Protein synthesis
 
ATP synthesis
Mycolic acid synthesis
 
Folic acid synthesis
Cell wall synthesis
Cell wall synthesis
Cell wall synthesis
Mycolic acid synthesis

Bactericidal and sterilizinga

Bactericidal and sterilizing
Bactericidal and sterilizing
 
Bactericidal
Bactericidal
Bactericidal
Bactericidal
 
Bactericidal and sterilizing
Possibily sterilizing
Weakly bactericidal
Weakly bactericidal
Bacteriostatic
Bacteriostatic
 
 
Bactericidal
Bacteriostatic
Bactericidal
Bactericidal
 
Bactericidal and sterilizing
Bactericidal and sterilizing
 
Bacteriostatic
Bactericidal
Bactericidal
Bactericidal
Bacteriostatic

aLevofloxacin is bactericidal at high-dose
bThiacetazone is not recommended for HIV-infected patients

Table 1: Re-classification of anti-TB drugs for proper management of multidrug-resistant tuberculosis



June 2018150

drug at an affordable price and reliable laboratory 
tests for confirming susceptibility or resistance of 
M. tuberculosis to the drug. Accordingly, high-dose 
isoniazid can be added to an MDR-TB regimen when 
a mutation in the katG gene is absent, however, 
it should not be counted as one of the four active 
drugs[32-34,36]. Similarly, rifabutin should be considered 
if susceptibility is confirmed or is suggested by a 
favorable rpoB mutation profile[37,38], but it should not 
be counted as one of the four active drugs. 

Another important development in the treatment 
of MDR-TB is the introduction of the shorter 
‘Bangladesh regimen’ of 9-months duration[20,46]. This 
regimen included an intensive phase of 4 months with 
high-dose gatifloxacin, PZA, ethambutol, clofazimine, 
kanamycin, prothionamide and isoniazid, followed 
by 5 months of continuation phase with high-dose 
gatifloxacin, PZA, ethambutol, clofazimine and 
reported treatment success rate of nearly 90%[20,46]. 
This regimen is much cheaper than the longer 
regimens that require treatment for 18 - 24 months. 
However, gatifloxacin, which likely played a critical 
role in its success, was withdrawn from the market 
due to the association of this drug with dysglycaemia, 
depriving resource-poor countries of an efficacious, 
effective and inexpensive drug[47]. The WHO has 
also recommended this shorter MDR-TB regimen 
in its new guidelines with moxifloxacin replacing 
gatifloxacin[33]. The revised shorter regimen now 
includes an initial phase of 4 - 6 months of treatment 
with PZA, kanamycin, moxifloxacin, prothionamide, 
clofazimine, high-dose isoniazid and ethambutol 
followed by 5 months of continuation phase with 
PZA, kanamycin, moxifloxacin and ethambutol[21,33,48]. 
The shorter regimen is suitable for adults and 
children with RR-TB and MDR-TB who have not 
been previously treated with second-line drugs and 
the M. tuberculosis strain has either been shown to 
be susceptible to fluoroquinolones and second-line 
injectable agents or the resistance to these agents is 
considered highly unlikely[33]. The WHO guidelines 
also recommend rapid diagnosis of drug resistance 
detection by molecular testing to ensure appropriate 
selection of patients who can truly benefit from the 
shorter MDR-TB regimen[33]. Rapid diagnosis will 
also reduce the duration of the infectious period 
by rapid initiation of treatment with an adequate 
regimen, further transmission of MDR-TB within the 
community and development of additional resistance 
leading to pre-XDR-TB and XDR-TB[21,33,48].

Drug susceptibility testing of M. tuberculosis to 
anti-TB drugs

Accurate DST of M. tuberculosis in clinical 

specimens and culture isolates to all first-line 
(rifampin, isoniazid, ethambutol and PZA) and 
important second-line (fluoroquinolones, particularly 
new generation fluoroquinolones, levofloxacin, 
gatifloxacin and moxifloxacin and injectable agents; 
kanamycin, amikacin or capreomycin) drugs is 
crucial for the diagnosis of DR-TB/MDR-TB for proper 
management of MDR-TB patients[49-52]. Effective 
treatment with sufficient number of active drugs for 
the appropriately required duration will also limit 
transmission of MDR-TB and development of XDR-
TB[10,53]. Recent modelling studies have suggested 
that improper treatment of patients with DR-TB and 
MDR-TB may lead to replacement of pansusceptible 
TB by MDR-TB as the dominant M. tuberculosis 
phenotype across the world[54,55]. 

Phenotypic DST is usually considered as the 
most reliable laboratory approach to determine 
susceptibility or resistance of M. tuberculosis to anti-
TB drugs due to good clinical correlation and quality 
control. Phenotypic DST of M. tuberculosis by solid 
(Lowenstein-Jensen or 7H10 agar) medium-based 
critical proportion method is considered as the gold 
standard for first-line (except PZA) and important 
second-line drugs. However, the method requires 4 - 
6 weeks to report results[50,56,57] (Table 2). Commercial 
liquid culture systems and molecular assays have been 
developed and endorsed by WHO and Centers for 
Disease Control and Prevention (CDC) for more rapid 
detection of drug resistance in M. tuberculosis[50,51,58]. 
The liquid-broth-based semiautomated, radiometric 
BACTEC 460TB system accurately performed DST 
of M. tuberculosis for both first-line (including PZA) 
and important second-line drugs for more than two 
decades, reporting results within 14 days (Table 
2) and was considered as an accurate and reliable 
alternative to the solid medium-based method[23,51,57]. 
The concerns for safe disposal of radioactivity, 
however, led to the development of fully automated 
culture systems such as Bactec Mycobacteria Growth 
Indicator Tube (MGIT) 960 system, MB/BacT system 
and Versa TREK system with similar turnaround time, 
which subsequently replaced BACTEC 460TB system 
in clinical microbiology laboratories[23,51,57]. Consistent 
results were obtained in early proficiency testing 
studies between BACTEC 460TB system versus MGIT 
960 system or other automated systems for first-line 
and bactericidal second-line (fluoroquinolones and 
injectable aminoglycosides/cyclic peptides) drugs[51,57]. 
The diagnostic accuracy and reproducibility of 
phenotypic DST methods for less active second-line 
and other drugs are also inadequate as these methods 
have not been standardized internationally. This is 
reflected in the wide variability of practices among 
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supranational reference laboratories. Consequently, 
phenotypic DST for second-line and third-line drugs 
is not completely reliable[17,50,59,60].

Phenotypic DST by rapid liquid culture-based 
methods such as MGIT 960 system has been studied 
extensively for first-line drugs (isoniazid, rifampicin, 
ethambutol and PZA) with a general consensus 
regarding critical concentrations[38,50,57,60]. As stated 
above, streptomycin is now used as a second-line 
drug. Although the performance of MGIT 960 system 
has been excellent for isoniazid, recent studies have 
shown poor performance of this method for M. 
tuberculosis isolates for the other three (rifampicin, 
PZA and ethambutol) first-line drugs for different 
reasons[61-65] as described below.

Limitations of DST of M. tuberculosis by MGIT 
960 system for first-line drugs

Resistance of M. tuberculosis to rifampicin in ~97% 
isolates is due to mutations in an 81-base pair (bp) 
rifampicin resistance determining region (RRDR) of 
the rpoB gene[66]. The resistance in the remaining 3% 
isolates is due to mutations in N-terminal or cluster 
II regions of the rpoB gene or in other genes[66,67]. The 
solid medium-based proportion method with shorter 
(4 weeks) turnaround time and rapid liquid culture-
based MGIT 960 system fail to detect rifampicin 
resistance in M. tuberculosis strains exhibiting low-
level (minimum inhibitory concentration, MIC of 0.5-
2.0 µg/ml) resistance[68-71]. These low-level rifampicin-
resistant strains with increased MICs below the 
critical concentration mostly contain mutations 
within RRDR, particularly at codons 511, 516, 526 
and 533 or at codon 572 within cluster II region of the 
rpoB gene[63,68-71]. It should be pointed out here that 

I572F mutation in cluster II region of the rpoB gene 
which confers low-level resistance to rifampicin was 
accurately detected by the radiometric BACTEC 460TB 
system which has now been discontinued[69,70,72]. In 
one study carried out in Bangladesh and Democratic 
Republic of Congo, these disputed mutations 
accounted for >10% of all rpoB mutations in M. 
tuberculosis strains cultured from patients with failing 
therapy or experiencing relapse[70]. Furthermore, 
the significance of some (such as D516Y and I572F) 
of these disputed mutations in conferring resistance 
to rifampicin is indicated by gene replacement 
studies[73]. The patients infected with M. tuberculosis 
strains with disputed rpoB mutations often fail 
treatment or relapse, suggesting that rifampicin 
resistance due to disputed rpoB mutations is clinically 
and epidemiologically relevant[74-77]. These findings 
call for modification of the standard phenotypic 
DST by MGIT 960 system for greater accuracy of 
rifampicin resistance detection and suggest that a 
susceptible result should be confirmed by molecular 
testing when the suspicion for rifampicin resistance 
(such as previous history of anti-TB therapy, failing 
therapy, relapse or history of close contact with a 
patient with RR-TB and MDR-TB) is high. Molecular 
testing for rifampicin resistance is also important 
since some mutations (such as H526Y/D, S531L, etc.) 
confer cross resistance to rifabutin, while strains with 
other rpoB mutations (particularly at codon 511, 516, 
533 and some mutations at codon 526) are resistant to 
rifampicin but remain susceptible to rifabutin[37,38,78,79]. 
Hence, rifabutin may be used as an alternative 
second-line drug in treatment regimens of some 
MDR-TB patients.

PZA is used for the treatment of pan-susceptible 

Phenotypic and genotypic drug
susceptibility testing methods First-line drugs testeda Second-line/other drugs testedb Turn-around time

Solid medium-based critical proportion
Lowenstein-Jensen medium
7H10 agar

Liquid medium-based critical concentrations
Automated MGIT 960 system (m7H9 broth)
Automated MGIT 960 system (7H12 broth)

Hybridization-based methods
GeneXpert MTB/RIF assay
Real-time PCR-melting curve analysis
GenoType MTBDRplus assay
GenoType MTBDRsl assay

PCR-sequencing-based methods
Whole-genome sequencing

INH, RIF, EMB
INH, RIF, EMB
 
INH, RIF, EMB
PZA
 
RIF
INH
INH, RIF
 
INH, RIF, EMB, PZA
INH, RIF, EMB, PZA

SM, FQs, KAN, AMI, CAP, ETH, PAS, LZD
SM, FQs, KAN, AMI, CAP, ETH, PAS, BDQ
 
SM, FQs, KAN, AMI, CAP, ETH, PAS
 
 
 
FQs, KAN, AMI, CAP
 
FQs, KAN, AMI, CAP
All second-line/other drugs
All second-line/other drugs

4 - 6 weeks
4 - 6 weeks
 
10 - 14 days
10 - 14 days
 
2 hours
2 hours
1 day
1 day
1 - 2 days
1 - 2 days

aINH: isoniazid; RIF: rifampicin; EMB: ethambutol; PZA: pyrazinamide; SM: streptomycin; FQs: fluoroquinolones like ofloxacin, 
levofloxacin, gatifloxacin and moxifloxacin; KAN: kanamycin; AMI: amikacin; CAP: capreomycin; ETH: ethionamide; PAS: para-
amino salicylic acid; LZD: linezolid; BDQ: bedaquiline; m7H9: modified 7H9 broth

Table 2: Common phenotypic and molecular methods used for drug susceptibility testing of M. tuberculosis
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TB as well as DR-TB and MDR/XDR-TB, as the 
drug is active against 'persister' bacilli that are 
sequestered within macrophages and are not killed 
by other drugs[18,80]. The drug also improves outcome 
in fluoroquinolone-containing regimens for the 
treatment of MDR-TB and new drug regimens 
proposed for the treatment of various forms of DR-TB 
also show improved outcome when combined with 
PZA[39-41,81,82]. Unfortunately, resistance to PZA is found 
frequently in MDR-TB strains, as nearly 50% of MDR-
TB strains at some geographical locations are also 
resistant to PZA[83]. Despite these observations, PZA is 
still included in treatment regimens since DST for PZA 
is not applied in routine testing and even if applied, 
it often yields unreliable results[84,85]. Phenotypic DST 
of M. tuberculosis for PZA (most effective at pH 5.6) 
requires precise acidic conditions which prevent the 
growth of about 20% of the isolates[84]. Furthermore, 
the inoculum size also has profound effects on DST 
results as larger inoculum may lead to alkalization 
of the medium, causing false PZA resistance[85]. 
Nearly 90% of PZA-resistant M. tuberculosis isolates 
contain mutations in pncA encoding pyrazinamidase, 
the enzyme that converts the pro-drug PZA into its 
active form, pyrazinoic acid[86-88]. The pncA mutations 
are scattered across the entire length of the gene 
and the mutations linked with resistance have been 
thoroughly investigated[86-89]. Although nearly 10% of 
PZA-resistant M. tuberculosis isolates do not contain 
pncA mutation, the contribution of other genes (rpsA 
and panD) that have been analyzed so far appears 
minor, suggesting the involvement of other gene(s)
[87-89]. Due to difficulties in accurate phenotypic DST 
for PZA, WHO is currently considering pncA-based 
methods as the recommended approach for molecular 
diagnosis of PZA resistance in M. tuberculosis[8]. 

Ethambutol is a slow-acting, bacteriostatic 
anti-TB drug and the problems associated with 
accurate phenotypic DST for ethambutol have been 
recognized for quite some time, particularly with 
rapid liquid culture-based methods[90,91]. Ethambutol 
interferes with M. tuberculosis growth by inhibition 
of one of three arabinosyltransferases (encoded by 
embCAB operon) which participate in the synthesis 
of arabinogalactan, a component of the mycobacterial 
cell wall[92]. Mutations in embCAB operon are the 
first step in the evolution of ethambutol resistance 
but only modestly (3 - 8 fold) increase its MIC[73,93,94]. 
These mutations occur most frequently (pooled 
sensitivity of 0.76) in embB gene, particularly at 
codons 306, 406 and 497[95]. High-level resistance, 
however, develops subsequently due to acquisition 
of additional mutations in embCAB operon or in 
other genes[96,97]. Conventional solid medium-based 

phenotypic DST for ethambutol is time-consuming, 
while DST by MGIT 960 system often reports 
false susceptibility of M. tuberculosis mainly due 
to mutations in ethambutol resistance conferring 
genes (particularly embB) that increase MIC close 
to the critical concentration of the drug[50-52,73,93,94]. 
The radiometric BACTEC 460TB system which has 
now been discontinued was much more accurate 
compared to MGIT 960 system for ethambutol DST, 
particularly for M. tuberculosis isolates containing 
embB mutations that confer low-level but clinically 
significant resistance to ethambutol[64,93,94,98]. Current 
evidence shows that patients infected with embB 
mutants should be considered as having EMB-
resistant TB even if the isolates appear to be EMB-
susceptible by phenotypic DST methods to avoid 
evolution of secondary mutations and selection of 
fully drug-resistant strains[93-97]. False susceptibility 
to ethambutol is not very critical for the treatment of 
pansusceptible TB since ethambutol is used only in the 
initiation phase of treatment and can even be omitted 
from treatment regimens if the susceptibility of M. 
tuberculosis isolate to rifampicin and isoniazid has 
been documented[18,80]. However, false susceptibility 
to ethambutol is of considerable importance for the 
successful treatment of RR-TB and MDR/XDR-TB as 
drug regimens (including shorter regimens) for these 
conditions should include all active first-line drugs 
for improved outcome[10,11,28,33,46]. 

Limitations of phenotypic DST methods for 
second-line drugs

Fluoroquinolones, particularly newer bactericidal 
fluoroquinolones (e.g. high-dose levofloxacin, 
moxifloxacin and gatifloxacin) and second-line 
injectable drugs (aminoglycosides, kanamycin and 
amikacin and cyclic peptides, capreomycin and 
viomycin) are the backbone of treatment regimens 
for MDR-TB, and resistance to these drugs in MDR-
TB strains defines XDR-TB[8,10,32-34]. Streptomycin, 
another aminoglycoside which was used earlier as a 
first-line agent, is now used as second-line drug due 
to higher rates of resistance of M. tuberculosis strains 
to this agent[10,32-34]. The MGIT 960 system has also 
been evaluated for fluoroquinolones and injectable 
agents; aminoglycosides (amikacin and kanamycin) 
and cyclic peptides (e.g. capreomycin) yielding 
excellent agreement with the reference proportion 
method or with BACTEC 460TB system[50-52,59,60,99]. 
However, these studies have mainly been carried 
out with M. tuberculosis strains exhibiting high-level 
resistance to bactericidal second-line drugs. Recent 
studies on rifampicin-resistant and ethambutol-
resistant strains indicate that M. tuberculosis isolates 
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with low-level resistance to second-line drugs may 
also yield discordant results more frequently with 
rapid liquid culture-based methods such as MGIT 
960 system compared to the proportion method. 
The performance of MGIT 960 system for less active 
(mainly bacteriostatic) second-line drugs has been sub-
optimal, mainly because the critical concentrations 
for these agents are not well-defined[50-52,99]. The 
problems associated with slow and/or inaccurate DST 
of M. tuberculosis by phenotypic methods have been 
overcome by developing molecular methods.

Molecular methods for DST of M. tuberculosis
Molecular methods detect genetic mutations 

associated with drug resistance rapidly (within 
1 - 2 days) and shorten the time between MDR/
XDR-TB diagnosis and appropriate treatment[100-102]. 
To ensure that mutations associated with drug 
resistance are differentiated from other mutations, 
specific mutations are validated by gene replacement 
studies[73,93,94]. Another advantage associated with this 
approach are the findings that different mutations 
confer different levels of phenotypic resistance to 
anti-TB drugs and some mutations are significantly 
associated with higher odds of patient mortality[103-106]. 
Based on the methodology, molecular methods are 
grouped into three main categories: hybridization-
based assays including real-time polymerase chain 
reaction (PCR) assays and line probe assays, PCR-
sequencing of select panel of target genes and whole-
genome sequencing (WGS) of M. tuberculosis in 
clinical specimens and culture isolates[107,108] (Table 2).

Hybridization-based molecular diagnostic assays 
for DR-TB, MDR-TB and XDR-TB

Hybridization-based assays mainly include 
GeneXpert MTB/RIF assay (Xpert), reverse-
hybridization-based line probe assays and various 
formats of DNA microarrays for detecting resistance 
to various combinations of first-line and/or second-
line drugs. Xpert is a fully automated, cartridge-based, 
real-time PCR assay that detects active TB disease and 
resistance of M. tuberculosis to rifampicin[109-111]. Since 
nearly 85% of rifampicin-resistant M. tuberculosis 
isolates are also additionally resistant to isoniazid, the 
method also detects the majority of MDR-TB cases[8,23]. 
Another cartiridge-based, fully-automated assay that 
simulatenously detects resistance of M. tuberculosis 
to isoniazid, fluoroquinolones and second-line 
injectable agents directly in clinical specimens has 
recently been developed as another point-of-care 
test[112]. Thus, combining this test with Xpert will not 
only detect MDR-TB more specifically, but will also 
help in the diagnosis of XDR-TB. One disadvantage 

of the Xpert (and other hybridization-based assays) is 
the recent findings of silent mutations in the rpoB gene 
that lead to false rifampicin resistance by Xpert[71,113]. 
This has resulted in revised WHO recommendations 
regarding the use of Xpert. The WHO guidelines 
now state that Xpert may be used as the initial 
diagnostic test, and treatment for MDR-TB should 
be started if rifampicin resistance result is expected 
or, if unexpected, Xpert testing should be repeated 
on another sputum sample, particularly for settings 
where the prevalence of rifampicin-resistant TB is 
<15%[114]. Treatment, however, should be optimized 
following phenotypic testing or DST by another 
genotypic test and resolution of any discordant 
rifampicin susceptibility results by sequencing of the 
rpoB gene[114].

Reverse hybridization-based line probe assays 
that are commercially available mainly include 
GenoType MTBDRplus assay that detects resistance 
of M. tuberculosis to rifampicin and isoniazid for 
the diagnosis of MDR-TB and GenoType MTBDRsl 
assay that detects resistance to fluoroquinolones 
(levofloxacin, gatifloxacin and moxifloxacin) 
and injectable agents (kanamycin, amikacin and 
capreomycin) in MDR-TB strains for the diagnosis of 
XDR-TB[115,116]. Compared to other molecular assays 
(such as PCR-sequencing), line probe assays (and PCR-
restriction fragment length polymorphism) are more 
suitable for the detection of developing resistance or 
infection with two strains, one susceptible and one 
drug-resistant (heteroresistance) strain as they are 
more easily detected by differential hybridization 
with wild-type and mutant probes[117,118]. However, 
similar to Xpert assay, line probe assays are also 
prone to report false resistance due to synonymous 
point mutations in target region[58,71,119]. Line probe 
assays have also been developed for pncA gene for the 
detection of resistance to pyrazinamide[120,121]. 

DNA microarrays have also been developed 
for detecting resistance to various combinations of 
first-line and/or second-line drugs (Table 2). A DNA 
microarray (GeneChip) has been developed for 
detection of MDR-TB and is commercially available[122]. 
A simplified microarray test has also been developed 
for detecting and identifying mutations in rpoB, katG 
+ inhA, embB, and rpsL for reporting resistance to 
rifampicin, isoniazid, ethambutol and streptomycin 
with sensitivities (relative to phenotypic DST) of 
100%, 90%, 70% and 35%, respectively. The sensitivity 
for MDR-TB was 89% relative to phenotypic DST[123]. 
However, many isolates yielded false-susceptible 
results due to DNA mutations that were not 
represented by a specific microarray probe[123]. An 
integrated microfluidic card with TaqMan probes 
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and high-resolution melting curve analysis has 
also been developed for detecting mutations in 
critical regions of rpoB, katG + inhA, embB, rpsL + 
rrs + eis, gyrA + gyrB, and pncA genes for detecting 
resistance to rifampicin, isoniazid, ethambutol, 
aminoglycosides (streptomycin, kanamycin and 
amikacin) + cyclic peptides (capreomycin and 
viomycin), fluoroquinolones and pyrazinamide, 
respectively. The test reported an accuracy of 96.1% 
in comparison to that of Sanger sequencing and 87% 
accuracy compared to phenotypic DST[124]. 

PCR-sequencing-based molecular diagnostic 
assays for DR-TB, MDR-TB and XDR-TB

PCR amplification followed by DNA sequencing 
(PCR-sequencing) has been used for detecting 
resistance to one or several first-line and second-line 
drugs by targeting appropriate number and regions 
of loci conferring resistance to different anti-TB 
drugs[64,72,100,125]. The sensitivity of PCR-sequencing for 
first-line and second-line drugs varies considerably 
according to the number and regions of drug 
resistance associated loci included for each drug. The 
sensitivity is also affected by the frequency of specific 
mutations in these loci at different geographical 
locations/ethnic groups of TB patients[72-74,118,126-128]. 
Furthermore, this approach is time consuming and 
technically demanding and is rapidly being replaced 
by WGS[101,102].

Whole-genome sequence-based assays for DR-TB, 
MDR-TB and XDR-TB

The problem of lower sensitivity of drug 
resistance detection due to limited genome coverage 
by hybridization-based assays and PCR-sequencing 
of selected panel of gene loci are overcome by 
WGS[101,102]. WGS characterizes both common and rare 
mutations predicting drug resistance, or consistency 
with susceptibility, for all first-line and second-line 
anti-TB drugs. With the advent of next generation 
sequencing technologies, use of WGS is increasingly 
being applied for routine mycobacterial species 
identification, detection of drug resistance and strain 
typing of M. tuberculosis[101,129-132]. The coverage of the 
entire genome also makes WGS a rapidly scalable 
method for determination of drug resistance caused 
by any chromosomal mutation to any first-line and 
second-line drug as well as newer anti-TB agents 
(Table 2). Recent studies have also demonstrated 
the applicability of WGS for tracking transmission 
and outbreaks of DR-TB and deciphering novel 
mechanisms of drug resistance[130,133,134]. Novel 
methods for DNA extraction from MGIT 960 
cultures, optimization of library preparation, and 

bioinformatics pipeline have been introduced to 
reduce the turnaround time for obtaining WGS 
data[131,132]. Recent studies have also shown that 
WGS of M. tuberculosis can be performed directly 
from patient samples to rapidly generate antibiotic 
susceptibility profiles for same-day diagnosis[135,136]. 
England is the first country that has already started 
using WGS on a national scale to realize its full 
potential for the diagnosis of tuberculosis, detection 
of drug resistance, and typing of M. tuberculosis for 
epidemiological purpose[137]. However, the high cost 
of equipment and reagents, requirement of technical 
expertise and bioinformatic support make this 
method difficult to implement, at least at present, in 
resource-poor developing countries where DR-TB 
and MDR/XDR-TB are endemic. In this regard, it is 
pertinent to mention that the introduction of Xpert 
assay few years ago revolutionized the diagnosis of 
active TB and its resistance to rifampicin[109-111]. This 
test is currently provided at reduced cost by WHO 
to poor developing countries for rapid diagnosis of 
TB, RR-TB and MDR-TB. Similar action is urgently 
needed to simplify WGS data acquisition and analysis 
on a cost-effective basis to make it suitable for poor 
developing countries, if the WHO’s target of ‘End TB 
by 2035’ is going to be realized. 

CONCLUSION
Widespread occurrence of DR-TB and MDR-

TB is mainly responsible for most of the global TB 
deaths. Nearly 600,000 cases of RR-TB and MDR-TB 
are estimated to have occurred in 2016 that resulted 
in the death of 240,000 patients. Accurate DST of 
Mycobacterium tuberculosis in clinical specimens and 
culture isolates to first-line and second-line drugs is 
crucial for rapid diagnosis and effective management 
of MDR-TB. Phenotypic DST of M. tuberculosis by 
solid medium-based proportion method is considered 
as the gold standard; however, the method requires 
4 - 6 weeks to report results. The liquid medium-
based fully automated culture systems (e.g. MGIT 960 
system) report results within 10 - 14 days; however, 
their performance for M. tuberculosis isolates carrying 
specific resistance conferring mutations in target 
genes for some first-line drugs (e.g. rifampicin and 
ethambutol) and many second-line drugs is sub-
optimal. To overcome these limitations, molecular 
methods have been developed for rapid (within 1 - 
2 days) detection of drug resistance for all first-line 
and important second-line drugs. Whole-genome 
sequencing is a newer alternative that has the 
potential of providing rapid drug resistance profiles 
for all anti-TB drugs to inform treatment. The method 
additionally provides strain information for global 
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epidemiological surveillance. However, the cost of 
equipment and reagents is prohibitively high for 
resource-poor developing countries where DR-TB 
and MDR-TB are endemic. The method also requires 
expert technical and bioinformatic support, which 
makes this method difficult to implement in resource-
poor and developing countries. Efforts are urgently 
needed to simplify WGS data acquisition and analysis 
on a cost-effective basis to make it suitable for poor 
developing countries to meet WHO’s target of ‘End 
TB by 2035’ across the world.
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